National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology

All-weather tropospheric

3D Wind

from microwave sounders

Bjorn Lambrigtsen

Hui Su, Joseph Turk, Svetla Hustona-Veleva, Van Dang

Jet Propulsion Laboratory California Institute of Technology

> IGARSS 2017 Fort Worth; July 24-28, 2017

Copyright 2017 California Institute of Technology. Government sponsorship acknowledged

3D wind from space: State of the art

AMV: GOES and similar geostationary satellites

- Method: Track cloud and water vapor features
- Observations used: Brightness temperatures => ~ T(feature)
- Height registration: Forecast $T(z) \Rightarrow z(feature)$
- Pros: Very frequent obs. (5-15 min); covers large portion of a hemisphere
- Cons: Uncertain height registration

AMV: MODIS

- Method: Similar to GOES
- Coverage: Polar regions only
- Pros: Polar-region coverage complements GOES
- Cons: Uncertain height registration; infrequent obs. (≤ 100 min); limited coverage

CMV: MISR

- Uses parallax motion from multi-angle cameras during 7-minute overflight interval
- Pros: Precise height registration
- Cons: Cloud top winds only; limited dynamic range; sparse global coverage

Doppler lidar: Coming (soon?)

- Pros: Very high vertical resolution; precise height registration
- Cons: Obscured by clouds; sparse coverage; limited laser life time

Alternative: Atmospheric sounders

AMV: Track water vapor features

- Method: Track water vapor features (similar to GOES and MODIS)
- Observations used: Retrieved q(z,t) no need for T(z) from forecasts
- Height registration: Absolute (referenced to p_{surface})
- Pros: Accurate height registration
- Cons: Moderate spatial resolution (~ 2 km vertically, 15-25 km horizontally)

Infrared sounders

- Example: AIRS (Aqua), CrIS (S-NPP) Coming soon: CubeSat IR sounders
- Coverage: Polar regions only (similar to MODIS)
- Cons: Infrequent obs. (≤ 100 min); limited coverage; obscured by clouds

Microwave sounders

- Example: AMSU (NOAA), ATMS (S-NPP) Coming soon: CubeSat MW sounders
- Coverage: Polar regions only (similar to MODIS)
- Cons: Penetrates clouds

Challenge: Temporal sampling

- All are polar-orbiting LEO satellites => polar coverage only, long sampling intervals
- Requirement: Sampling interval ~5-20 minutes
- Solution: Small-sat (LEO) cluster; Large-sat (GEO) single sensor

Best option: GEO

GEO sensors achieve high temporal resolution: minutes

- Important for observations of highly dynamic processes and phenomena
- Ideal for wind measurements through feature tracking
- Ideal for monitoring of high-intensity short-duration precipitation events

GEO sensors provide continuous coverage: days-weeks

- Important for observation of storm life cycles
- Important for rain totals (storms or regions)

IR sounders: Clouds are problematic

- Need to do "hole hunting"
- Can't get observations in or below clouds

Best: MW sounders

- Meteorologically "interesting" scenes: Full cloud cover; Severe storms & hurricanes
- Cloud liquid water distribution
- Precipitation & convection
- Above all: Can observe water vapor features through clouds

Jet Propulsion Laborator Colifornia Institute of Technology O why don't we already have GEO/MW? Pasadena, California

The antenna is the key, and the problem.

- Antenna size is determined by distance and "spatial resolution"
- AMSU antenna is 15 cm dia. ⇒ 50-km resolution from 850 km
- GEO orbit is \sim 36000 km \approx 42 x 850 km
- · AMSU-antenna must then be 42 x 15 cm to give 50-km res. from **GEO**
- This is 6.5 meters! Not feasible! This can be reduced somewhat by degrading the antenna efficiency - but still impractical
- Solution: Synthesize large antenna ⇒ GeoSTAR

Solution: GeoSTAR

Aperture-synthesis concept

- Sparse array employed to synthesize large aperture
- Cross-correlations -> Fourier transform of Tb field
- Inverse Fourier transform on ground -> Tb field

Array

- Optimal Y-configuration: 3 sticks; N elements
- Each element is one I/Q receiver, 3.5λ wide (2.1 cm
 © 50 GHz; 6 mm
 © 183 GHz!)
- Example: N = 100 ⇒ Pixel = 0.09° ⇒ 50 km at nadir (nominal)
- One "Y" per band, interleaved

Other subsystems

- A/D converter; Radiometric power measurements
- Cross-correlator massively parallel multipliers
- On-board phase calibration
- Controller: accumulator -> low D/L bandwidth

This is the only viable "array spectrometer" design and is what the NRC had in mind

Proof-of-concept prototype developed at JPL

A GEOSTATIONARY MICROWAVE SOUNDER MISSION FOCUSED ON THE EVOLUTION OF SEVERE STORMS

Improve our understanding of sudden and unpredicted change in intensification and motion of destructive storms:

- hurricanes
- severe thunderstorms and mesoscale convective systems
- mid-latitude cyclones and winter storms

Low cost as a hosted payload

Many hosting opportunities in GEO:

There are more than 80 GEO comm-sats that provides a view of the Americas, being replaced at a rate of 5-6 per year

GeoStorm Highlights	
Targeted observations	Life cycle storm tracking
Time-continuous	Capture dynamic processes; diurnal cycle fully resolved
Multiple simultaneous	Temperature, humidity,
key parameters	precipitation, wind
All-weather	Cloud/rain-penetrating
3-D observations	1000 km dia x 15 km vert. (volume); 25 km dia x 3 km vert. (resolution)
Wide coverage	All storms visible from GEO

This mission concept was used as the basis for an OSSE study of 3D wind capabilities

WRF simulation of Rita (2005)

Credit: S. Hristova-Veleva & J. Turk, JPL

WRF simulation embedded in global model; developed by NOAA Simulates NATL hurricane for 13 days

Four nested grids:

- 1. 27 km 30 minutes (240x160)
- 2. 9 km 30 minutes (120x120)
- 3. 3 km 30 minutes (240x240)
- 4. 1 km 6 minutes (480x480)

The innermost grid follows the storm

Journal of Advances in Modeling Earth Systems

Volume 5. Issue 2. pages 382-405, 13 JUN 2013 DOI: 10.1002/jame.20031 http://onlinelibrary.wilev.com/doi/10.1002/jame.20031/full#jame20031-fig-0004

GeoStorm simulations

Simulated q(x,y,z,t) derived from nature run fields

- Replicate GeoStorm spatial resolution
- Replicate GeoStorm temporal sampling
- Replicate GeoStorm precision
- Used primarily Grid 4 (1 km, 6 minutes)

Horizontal spatial

Convolve NR with 25-km gaussian ⇔ 25-km horizontal resolution

Vertical resolution

Convolve NR with AMSU-like averaging kernels ⇔ 2-3 km vertical resolution

Temporal

Convolve NR with 15-minute box-car averaging kernel ⇔ 15-minute averaging

Noise

Add ~15% random noise to convolved q

Precipitation filtering according to MIRS retrieval capabilities

- Rain rate < 1 mm/hr: All cases accepted
- Rain rate > 1 mm/hr and < 3 mm/hr: Only above 700 mb accepted
- Rain rate > 3 mm/hr: All cases rejected

Some NR wind statistics

NR wind speed distribution for Grid 1 (blue) and Grid 4 (red)

Shows that model wind does not strongly depend on spatial scale

NR wind speed vertical distribution for Grid 1 (horizontal axis) and Grid 4 (vertical axis)

Shows that vertical distribution of wind also does not strongly depend on spatial scale

GeoStorm simulation results

Examples at two pressure levels

Large sample size (> 5000); cases with rain rate < 1 mm/hr only

Precision ≈ ± 2 m/s - This meets WMO requirements for wind

Transfer function is nearly linear, bias ~ 0 Dynamic range is limited by Δt

The LEO option: Additional simulations

How to achieve adequate temporal sampling from LEO

- Frequent overpasses: Polar regions (polar-orbiting satellites)
- Multiple satellites: E.g., 2xMODIS, nxAMSU
- Cluster of small-sats

Nominal architecture

- 3 CubeSats flying in formation, 5-15 minutes apart
- Each has a MW sounder (e.g., MASC)
 - · Minimum capability: water vapor sounding, T also desirable

Nature run

- WRF simulations of pre-hurricane tropical atmosphere, 1 hour
- 4-km grid
- 5-minute intervals ⇔ 11 samples in 1 hour

Simulations

- Convolve with AMSU averaging kernels ⇔ 2-3 km vertical resolution
- NR temporal & horizontal sampling ⇔ 4 km horizontal resolution. 5-minutes
- Precipitation filtering: < 1 mm/hr only
- Noise: Same as for GEO case

LEO constellation simulation results

- Both simulations yield ±2 m/s precision, ~ 0 bias
 - GEO simulations have robust statistics
 - LEO simulations based on small sample
 - Accuracy & precision are not sensitive to instrument noise
 - This may mean that the AMV algorithm is the main source of errors
 - To be investigated further
- Rain is only a minor factor
 - MW sounders are not affected by clouds
 - Even tropical cyclones exceed 3 mm/hr in relatively small areas
 - Advanced retrieval systems can account for rain
- Still to be done
 - Determine dynamic range & precision vs. Δt and $\Delta x, \Delta y$
 - See if AMV algorithms can be improved